
R. Levinson, P. Berdahl, and H. Abkari Solar Spectral Optical Properties of Pigments, Part II (Survey)

3.4 Green

3.4.1 Chromium Oxide Green, Modified Chromium Oxide Green

Chromium oxide green Cr2O3 (G01 - G02) exhibits strong scattering alternating with strong
absorption across the visible spectrum, and strong scattering and mild absorption in the NIR.
Since the pigment is almost opaque in the visible, a thin layer of chromium oxide green over a white
background yields a medium-green coating with good NIR reflectance (0.57 for 13-µm thick film
G02). The modified chromium oxide green (G03) is mostly chromium oxide, with small amounts
of iron oxide, titanium dioxide, and aluminum oxide [16]. A layer of the modified chromium oxide
green over a white background produces a medium green with excellent NIR reflectance (0.71).

Cr2O3 green is often mentioned as an infrared-reflective pigment that is useful for simulating
the high infrared reflectance of plant leaves. Indeed, a high NIR reflectance is observed. However,
our data for sample films G01 and G02 do show that there is a broadband absorption of about
10 mm−1 in the near-infrared. While our measurements of absorptance coefficient are not precise
for low absorptances, this value is clearly distinct from zero. Pure Cr2O3, fired in air, tends to
become slightly rich in oxygen, which results in p-type semiconducting behavior [23, 24]. Thus it
is possible that the broadband IR absorption of Cr2O3 is due to free carrier absorption by mobile
holes. Ref. [23] also reports that doping with Al can reduce the p-type conductivity in Cr2O3, so
it seems likely that doping with Al and/or certain other metals can also reduce the IR absorption.

The modified chromium oxide green G03 is similar to G01 and G02 Cr2O3. However its green
reflectance peak at 550 nm is somewhat smaller and its infrared absorption is clearly much smaller
than those of samples G01 and G02.

3.4.2 Cobalt Chromite Green

Cobalt chromite green (G04 - G06) is similar to cobalt chromite blue, and is commonly used for
military camouflage.

3.4.3 Cobalt Titanate Green

Cobalt titanate green (G07 - G09) is similar to cobalt chromite green, but scatters more strongly
across the entire solar spectrum and has a pronounced absorption trough around 500 nm. A white
background makes cobalt teal G07 very NIR reflective (0.73) but also appear light blue (hence, the
name teal). The other two cobalt titanate greens (G08, G09) have respectable NIR reflectances
(0.47, 0.37) over white and appear medium green.

3.4.4 Phthalocyanine Green

Phthalocyanine green (G10 - G11) is similar to phthalocyanine blue, but absorbs more strongly in
the short NIR. Hence, the NIR reflectance of a thin phthalo green film over white, while respectable,
is only 70% of that achieved by a thin layer of phthalo blue over white (0.45 for G10 vs. 0.63 for
U12). Note also that the error in predicted reflectance over white for G11 is large, as discussed in
the companion article [1].
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